38 research outputs found

    Structural Bioinformatics and Big Data Analytics: A mini-review

    Get PDF
    Structural Biology and Structural Bioinformatics are two complementary areas that deal with three dimensional structures of biomolecules. With the advent of high-throughput techniques and automation of identifying structures there is a barrage of data generated currently, which fall under the area of Big Data. In this review, we present examples and current approach to handle massive volume of structural data and some potential applications of Big Data from Structural Bioinformatics perspective.

    Thermostability in endoglucanases is fold-specific

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy) database.</p> <p>Results</p> <p>Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion.</p> <p>Conclusions</p> <p>Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient.</p

    Structural Characterization of CalS8, a TDP-Ī±-D-Glucose Dehydrogenase Involved in Calicheamicin Aminodideoxypentose Biosynthesis

    Get PDF
    Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-Ī±-d-glucose (UDP-Glc) to the key metabolic precursor UDP-Ī±-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a \u3e15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8Ā·substrateĀ·cofactor ternary complex (at 2.47 and 1.95 ƅ resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process

    Structure of a cupin protein Plu4264 fromĀ Photorhabdus luminescensĀ subsp. laumondii TTO1 at 1.35 ƅ resolution

    Get PDF
    Proteins belonging to the cupin superfamily have a wide range of catalytic and noncatalytic functions. Cupin proteins commonly have the capacity to bind a metal ion with the metal frequently determining the function of the protein. We have been investigating the function of homologous cupin proteins that are conserved in more than 40 species of bacteria. To gain insights into the potential function of these proteins we have solved the structure of Plu4264 fromĀ Photorhabdus luminescensĀ TTO1 at a resolution of 1.35 ƅ and identified manganese as the likely natural metal ligand of the protein

    Structural Dynamics of a Methionine Ī³-lyase for Calicheamicin Biosynthesis: Rotation of the Conserved Tyrosine Stacking with Pyridoxal Phosphate

    Get PDF
    CalE6 from Micromonospora echinospora is a (pyridoxal 5ā€² phosphate) PLP-dependent methionine Ī³-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acidcomplex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structuralanalysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation

    Crystal structure of SgcJ, an NTF2-like superfamily protein involved in biosynthesis of the nine-membered enediyne antitumor antibiotic C-1027

    Get PDF
    Comparative analysis of the enediyne biosynthetic gene clusters revealed sets of conserved genes serving as outstanding candidates for the enediyne core. Here we report the crystal structures of SgcJ and its homologue NCS-Orf16, together with gene inactivation and site-directed mutagenesis studies, to gain insight into enediyne core biosynthesis. Gene inactivation in vivo establishes that SgcJ is required for C-1027 production in Streptomyces globisporus. SgcJ and NCS-Orf16 share a common structure with the nuclear transport factor 2-like superfamily of proteins, featuring a putative substrate binding or catalytic active site. Site-directed mutagenesis of the conserved residues lining this site allowed us to propose that SgcJ and its homologues may play a catalytic role in transforming the linear polyene intermediate, along with other enediyne polyketide synthase-associated enzymes, into an enzyme-sequestered enediyne core intermediate. These findings will help formulate hypotheses and design experiments to ascertain the function of SgcJ and its homologues in nine-membered enediyne core biosynthesis

    A clade-specific Arabidopsis gene connects primary metabolism and senescence

    No full text
    Nearly immobile, plants have evolved new components to be able to respond to changing environments. One example is Qua Quine Starch (QQS, AT3G30720), an Arabidopsis thaliana-specific orphan gene that integrates primary metabolism with adaptation to environment changes. SAQR (Senescence-Associated and QQS-Related, AT1G64360), is unique to a clade within the family Brassicaceae; as such, the gene may have arisen about 20 million years ago. SAQR is up-regulated in QQS RNAi mutants and in the apx1 mutant under light-induced oxidative stress. SAQR plays a role in carbon allocation: overexpression lines of SAQR have significantly decreased starch content; conversely, in a SAQR T-DNA knockout line, starch accumulation is increased. Meta-analysis of public microarray data indicates that SAQR expression is correlated with expression of a subset of genes involved in senescence, defense, and stress responses. SAQR promoter::GUS expression analysis reveals that SAQR expression increases after leaf expansion and photosynthetic capacity have peaked, just prior to visible natural senescence. SAQR is expressed predominantly within leaf and cotyledon vasculature, increasing in intensity as natural senescence continues, and then decreasing prior to death. In contrast, under experimentally-induced senescence, SAQR expression increases in vasculature of cotyledons but not in true leaves. In SAQR knockout line, the transcript level of the dirigent-like disease resistance gene (AT1G22900) is increased, while that of the Early Light Induced Protein 1 gene (ELIP1, AT3G22840) is decreased. Taken together, these data indicate that SAQR may function in the QQS network, playing a role in integration of primary metabolism with adaptation to internal and environmental changes, specifically those that affect the process of senescence

    Single-nucleotide variations associated with Mycobacterium tuberculosis KwaZulu-Natal strains

    No full text
    The occurrence of drug resistance in Mycobacterium tuberculosis, the aetiological agent of tuberculosis (TB), is hampering the management and control of TB in the world. Here we present a computational analysis of recently sequenced drug-sensitive (DS), multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. Single-nucleotide variations (SNVs) were identified in a pair-wise manner using the anchor-based whole genome comparison (ABWGC) tool and its modified version. For this analysis, four fully sequenced genomes of different strains of M. tuberculosis were taken along with three KwaZulu-Natal (KZN) strains isolated from South Africa including one XDR and one MDR strain. KZN strains were compared with other fully sequenced strains and also among each other. The variations were analysed with respect to their biological influence as a result of either altered structure or synthesis. The results suggest that the DR phenotype may be due to changes in a number of genes
    corecore